模拟示波器实验报告总结

时间:2025-05-26 14:39:56 论文大全

实验报告在科学研究中至关重要,它记录实验过程与结果,促进交流与合作,提升可重复性,激发创新思维和学习能力,同时培养科学素养与职业素养。以下是精选的模拟示波器实验报告总结(9篇),欢迎阅读与收藏。

模拟示波器实验报告总结 篇1

  一、实验目的

  1. 掌握示波器的基本结构和工作原理。

  2. 学会使用示波器观察并测量电信号的波形、电压、周期和频率等电参量。

  3. 了解并掌握信号产生器的使用方法。

  二、实验器材

  示波器:YB4320G 双踪示波器

  信号产生器:EE1641B 型函数信号产生器

  连接线:若干

  万用表(可选):用于校验电压

  三、实验原理

  1. 示波器的基本结构

  示波器主要由示波管(CRT)、电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统等组成。其中,示波管是示波器的核心部件,负责将电信号转换为可视的光信号。

  2. 示波器的工作原理

  示波器利用电子束在电场或磁场中的偏转,将电信号转换为图像显示在荧光屏上。电子束由电子枪发射,经过加速和聚焦后,由偏转系统控制其方向,在荧光屏上描绘出被测信号的波形。

  3. 信号波形测量

  通过调整示波器的.垂直偏转因数和水平偏转因数,可以观察到被测信号的完整波形,并测量其电压、周期和频率等参数。

  四、实验步骤

  1. 熟悉示波器和信号产生器的面板:了解各旋钮和开关的作用,并将各开关置于指定位置。

  2. 连接信号产生器和示波器:将信号产生器输出的正弦信号接入示波器的Y轴输入端,并设置合适的频率,如500Hz和1000Hz。

  3. 调整示波器:

  旋转“垂直偏转因数”旋钮,选择合适的垂直灵敏度,使波形在屏幕上清晰可见。

  旋转“水平偏转因数”旋钮,调整扫描速度,使波形在屏幕上显示2~3个周期。

  调节“触发”旋钮,使波形稳定显示在屏幕上。

  4. 观察并记录波形:观察示波器屏幕上显示的波形,并记录其电压、周期和频率等参数。

  5. 改变信号频率:调整信号产生器的频率,重复步骤3和4,观察并记录不同频率下的波形参数。

  6. 使用双踪显示功能(如适用):将两个不同频率的信号分别接入示波器的Y1和Y2通道,观察双踪波形。

  五、实验数据

  1. 500Hz正弦信号

  电压:1V

  周期:2ms

  频率:500Hz

  2. 1000Hz正弦信号

  电压:1V

  周期:1ms

  频率:1000Hz

  六、实验结果与分析

  通过本次实验,我们成功掌握了示波器的基本使用方法和信号波形的观察测量技巧。实验数据表明,示波器能够准确显示被测信号的波形,并测量其电压、周期和频率等参数。同时,我们也发现,当信号频率变化时,波形在屏幕上的显示也会相应变化,但示波器仍能保持较高的测量精度。

  七、问题与讨论

  1. 波形不稳定的原因:波形不稳定可能是由于触发设置不当或信号源不稳定引起的。在实验中,应仔细调整触发旋钮,确保波形稳定显示。

  2. 测量误差的来源:测量误差可能来源于示波器的读数误差、信号源的精度以及实验操作的不当等。为减小误差,应多次测量取平均值,并尽量使用高精度的测量仪器。

  3. 双踪显示的应用:双踪显示功能在实验中非常有用,可以同时观察两个不同信号的波形,便于比较和分析。然而,在使用过程中应注意两个信号的相位关系,以免产生混淆。

  八、实验结论

  本次示波器实验不仅加深了我们对示波器工作原理的理解,还提高了我们实际操作示波器的能力。通过观察和测量不同频率的正弦信号波形,我们掌握了示波器的基本使用方法和信号波形的分析方法。同时,我们也认识到在实验过程中应注意的细节和误差来源,为今后的实验工作打下了坚实的基础。

模拟示波器实验报告总结 篇2

  一、实验目的

  1、理解示波器的基本工作原理:通过实际操作,掌握示波器作为电子测量仪器的基本功能及其内部信号处理的基本原理。

  2、学习示波器的使用方法:熟悉示波器的面板布局、各旋钮和按键的功能,掌握如何正确设置示波器以观测和测量电信号的波形、频率、幅值等参数。

  3、观察与分析电信号波形:通过示波器观察不同电路产生的电信号波形(如正弦波、方波、三角波等),分析其特点,加深对电子电路特性的理解。

  二、实验器材

  1、双踪示波器一台

  2、信号发生器一台

  3、连接线若干

  4、待测电路

  三、实验原理

  示波器是一种能够显示电信号随时间变化的波形图形的电子测量仪器。它主要由示波管、垂直放大系统、水平扫描系统、电源系统以及触发系统等部分组成。示波器通过将被测信号送入垂直放大系统放大后,在示波管的.屏幕上显示出来,同时水平扫描系统提供时间基准,使得波形得以在时间轴上展开。触发系统用于稳定波形显示,确保测量的准确性。

  四、实验步骤

  1. 示波器预热与校准

  接通示波器电源,预热5-10分钟,使仪器达到稳定工作状态。

  使用标准信号源(如内置校准信号或外部信号发生器)对示波器进行校准,确保垂直灵敏度、水平扫描速率等参数准确。

  2. 信号发生器设置

  连接信号发生器与示波器,设置信号发生器输出所需的波形(如正弦波)、频率和幅值。

  3. 示波器参数设置

  调整示波器的垂直灵敏度(VOLTS/DIV),使波形在屏幕上占据合适的高度。

  设置水平扫描速率(TIME/DIV),使波形在屏幕上清晰显示且不过于密集或稀疏。

  调整触发模式(如自动触发、单次触发等),确保波形稳定显示。

  4. 观测与分析

  观察并记录示波器屏幕上显示的波形,包括波形的形状、频率、幅值等参数。

  分析波形特点,如正弦波的周期性、方波的占空比等,并与理论值进行对比。

  如需,改变信号发生器的参数,观察波形变化,进一步理解电信号的特性。

  5. 注意事项

  在操作过程中,注意保持仪器和连接线的清洁与干燥,避免短路或损坏。

  避免长时间将示波器置于强光直射下,以免影响屏幕显示效果。

  实验结束后,及时关闭电源,整理好实验器材。

  五、结论

  通过本次示波器实验,我深刻理解了示波器作为电子测量仪器的重要性及其基本工作原理。通过实际操作,我掌握了示波器的使用方法,能够熟练设置示波器参数以观测和测量电信号的波形、频率、幅值等参数。同时,通过观察和分析不同电路产生的电信号波形,我加深了对电子电路特性的理解,为后续课程的学习打下了坚实的基础。

模拟示波器实验报告总结 篇3

  一、 【实验名称】

  超声波声速的测量

  二、 【实验目的】

  1、了解声速的测量原理

  2、学习示波器的原理与使用

  3、学习用逐差法处理数据

  三、 【仪器用具】

  1、SV-DH-3型声速测定仪段(资产编号)

  2、双踪示波器(资产编号)

  3、SVX-3型声速测定信号源(资产编号)

  四、 【仪器用具】

  1.超声波与压电陶瓷换能器

  频率20Hz-20kHz的机械振动在弹性介质中传播形成声波,高于20kHz称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点,声速实验所采用的声波频率一般都在20~60kHz之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。

  图1纵向换能器的结构简图

  压电陶瓷换能器根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器。声速教学实验中所用的大多数采用纵向换能器。图1为纵向换能器的结构简图。

  2.共振干涉法(驻波法)测量声速

  假设在无限声场中,仅有一个点声源S1(发射换能器)和一个接收平面(接收换能器S2)。当点声源发出声波后,在此声场中只有一个反射面(即接收换能器平面),并且只产生一次反射。

  在上述假设条件下,发射波ξ1=Acos(ωt+2πx /λ)。在S2处产生反射,反射波ξ2=A1cos(ωt+2πx /λ),信号相位与ξ1相反,幅度A1<A。ξ1与ξ2在反射平面相交叠加,3合成波束ξξ3=ξ1+ξ2=(A1+A2)cos(ωt-2πx /λ)+A1cos(ωt+2πx /λ) =A1cos(2πx /λ)cosωt+A2cos(ωt - 2πx /λ)

  由此可见,合成后的波束ξ3在幅度上,具有随cos(2πx /λ)呈周期变化的特性,在相位上,具有随(2πx /λ)呈周期变化的特性。

  图4所示波形显示了叠加后的声波幅度,随距离按cos(2πx /λ)变化的特征。

  发射换能器与接收换能器之间的距离

  图2换能器间距与合成幅度

  实验装置按图7所示,图中S1和S2为压电陶瓷换能器。S1作为声波发射器,它由信号源供给频率为数十千赫的交流电信号,由逆压电效应发出一平面超声波;而S2则作为声波的接收器,压电效应将接收到的声压转换成电信号。将它输入示波器,我们就可看到一组由声压信号产生的正弦波形。由于S2在接收声波的同时还能反射一部分超声波,接收的声波、发射的声波振幅虽有差异,但二者周期相同且在同一线上沿相反方向传播,二者在S1和S2区域内产生了波的干涉,形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器S2处的振动情况。移动S2位置(即改变S1和S2

  之间的距离),你从示

  波器显示上会发现,当S2在某此位置时振幅有最小值。根据波的干涉理论可以知道:任何二相邻的振幅最大值的位置之间(或二相邻的振幅最小值的位置之间)的距离均为λ/ 2。为了测量声波的波长,可以在一边观察示波器上声压振幅值的同时,缓慢的改变S1和S2之间的距离。示波器上就可以看到声振动幅值不断地由最大变到最小再变到最大,二相邻的振幅最大之间的距离为λ/2;S2移动过的距离亦为λ/2。超声换能器S2至S1之间的距离的改变可通过转动鼓轮

  来实现,而超声波的频率又可由声速测试仪信号源频率显示窗口直接读出。

  图3用李萨如图观察相位变化

  在连续多次测量相隔半波长的S2的位置变化及声波频率f以后,我们可运用测量数据计算出声速,用逐差法处理测量的数据。

  3.相位法测量原理

  由前述可知入射波ξ1与反射波ξ2叠加,形成波束ξ3即ξ3 =A1cos(2πx /λ)cosωt+A2cos(ωt - 2πx /λ)即对于波束:ξ1 =Acos(ωt - 2πx /λ)

  由此可见,在经过△x距离后,接收到的余弦波与原来位置处的相位差(相移)为θ= 2π △x /λ。如图5所示。因此能通过示波器,用李萨如图法观察测出声波的波长。

  4.时差法测量原理

  连续波经脉冲调制后由发射换能器发射至被测介质中,声波在介质中传播,经过t时

  间后,到达L距离处的接收换能器。由运动定律可知,声波在介质中传播的速度可由以下公式求出:

  速度V=距离L/时间t

  图4发射波与接收波

  通过测量二换能器发射接收平面之间距离L和时间t ,就可以计算出当前介质下的声波传播速度。五、【实验内容】

  1.仪器在使用之前,加电开机预热15min。在接通市电后,自动工作在连续波方式,选择的介质为空气的初始状态。

  2.驻波法测量声速。 2.1测量装置的连接:

  图5驻波法、相位法连线图

  如图5所示,信号源面板上的发射端换能器接口(S1),用于输出一定频率的功率信号,请接至测试架的发射换能器(S1);信号源面板上的发射端的发射波形Y1,请接至双踪示波器的CH1(Y1),用于观察发射波形;接收换能器(S2)的输出接至示波器的CH2(Y2)

  2.2测定压电陶瓷换能器的最佳工作点

  只有当换能器S1的发射面和S2的接收面保持平行时才有较好的接收效果;为了得到较清晰的接收波形,应将外加的驱动信号频率调节到换能器S1、S2的谐振频率点处时,才能较好的进行声能与电能的相互转换(实际上有一个小的通频带),以得到较好的实验效果。按照调节到压电陶瓷换能器谐振点处的信号频率,估计一下示波器的扫描时基t/div,并进行调节,使在示波器上获得稳定波形。

  超声换能器工作状态的调节方法如下:各仪器都正常工作以后,首先调节发射强度旋钮,使声速测试仪信号源输出合适的电压(8~10VP-P之间),再调整信号频率(在25~45kHz),选择合适的示波器通道增益(一般0.2V~1V/div之间的位置),观察频率调整时接收波的电压幅度变化,在某一频率点处(34.5~37.5kHz之间)电压幅度最大,此频率即是压电换能器S1、S2相匹配频率点,记录频率FN,改变S1和S2间的距离,适当选择位置,重新调整,再次测定工作频率,共测5次,取平均频率f。

  2.3测量步骤

  将测试方法设置到连续波方式,合适选择相应得测试介质。完成前述2.1、2.2步骤后,观察示波器,找到接收波形的最大值。然后转动距离调节鼓轮,这时波形的幅度会发生变化,记录下幅度为最大时的距离Li-1,距离由数显尺(数显尺原理说明见附录2)或在机械刻度上读出,再向前或者向后(必须是一个方向)移动距离,当接收波经变小后再到最大时,记录下此时的距离Li。即有:波长λi=2│Li -Li-1│,多次测定用逐差法处理数据。

  3.相位法/李萨如图法测量波长的步骤

  将测试方法设置到连续波方式,合适选择相应的测试介质。完成前述2.1、2.2步骤后,将示波器打到“X-Y”方式,并选择合适的通道增益。转动距离调节鼓轮,观察波形为一定角度的斜线,记录下此时的距离Li-1;距离由数显尺(数显尺原理说明见附录2)或机械刻度尺上读出,再向前或者向后(必须是一个方向)移动距离,使观察到的波形又回到前面所说的特定角度的斜线,记录下此时的距离Li。即有:波长λi=│Li -Li-1│

  用共振干涉法测量声波的波长的实验装置如图所示。

  图中S1和S2为压电超声换能器。信号发生器输出的正弦交流信号加到S1上,由S1完成电声转换,作为声源,发出波前近似为平面的声波;S2作为超声波接收换能器,将接收到的声信号转换成电信号,然后接入示波器观察。S2在接收声波的同时,其表面还反射一部分声波。当S1与S2的表面互相平行时,往返于S1与S2之间的声波发生干涉而形成驻波。

  依波动理论,设沿X方向射出的入射波方程为

  y1=Acos(ωt-2πλx)

  反射波方程为

  y2=Acos(ωt+2πλx)

  式中,A为声源振幅;ω为角频率;2πxλ为由于波动传播到坐标x处(t时刻)引起的位相变化。

  在任意时刻t,空气中某一位置处的合振动方程为

  y=y1+y2=(2Acos2πλx)cosωt

  上式即为驻波方程。

  当cos2πλx=1,即2πλx=kπ时,在x=k·λ2 (k=0,1,2?)处,合成振动振幅最大,称为波腹或声振幅的极大值。

  当cos2πλx=0,即2πλx=(2k+1)π2时,在x=(2k+1)·λ4 (k=0,1,2?)处,合成振动振幅最小,称为波节或声振幅的极小值。

  改变两换能器之间的距离,当二者之间的距离是半波长的整数倍时,在发射换能器和接收换能器处,声波的幅度(声压)都达到极大值,此时称为“共振”。在相邻极大值之间,两换能器间的距离变化量为λ/2。由波腹(或波节)条件可知,相邻两个波腹(或波节)间的.距离为λ2,当S1和S2间的距离L恰好等于半波长(5)

模拟示波器实验报告总结 篇4

  一、【实验名称】

  示波器的使用

  二、【实验目的】

  1.了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法

  2.掌握用示波器观察电信号波形的方法

  3.学会使用双踪示波器观察李萨如图形和控制示波管工作的电路

  三、【实验原理】

  双踪示波器包括两部分,由示波管和控制示波管的控制电路构成

  1.示波管 示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两队相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏,高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。Y偏转板是水平放置的两块电极。在Y偏转板上和X偏转板上分别加上电压,可以在荧光屏上得到相应的图形。

  2.双踪示波器的原理

  双踪示波器控制电路主要包括:电子开关,垂直放大电路,水平放大电路,扫描发生器,同步电路,电源等;

  其中,电子开关使两个待测电压信号YCH1和YCH2周期性的轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形,由于荧光屏荧光物质的余晖及人眼视觉滞留效应,荧光屏上看到的是两个波形。

  如果正弦波与锯齿波电压的周期稍不同,屏上呈现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的,为了获得一定数量的完整周期波形,示波器上设有“Time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波性。(看到稳定波形的条件:只有一个信号同步)

  当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”;反之则为“外同步”。操作时,使用“电平旋钮”,改变触发电势高度,当待测电压达到触发电平时,开始扫描,直到一个扫描周期结束。但如果触发电势超出所显示波形最高点或最低点的范围,则扫描电压消失,扫描停止。

  3.示波器显示波形原理

  如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期相等时,则在荧光屏上显示出完整的正弦波形。

  4.李萨如图形的基本原理

  如果在示波器的Y偏转板上加上正弦波,在X偏转板上加上另一正弦波,则当两正弦波信号的频率比为简单整数比时,在荧光屏上将得到李萨如图形。

  四、【仪器用具】:

  信号发生器、双踪示波头、探头

  五、【实验内容】

  几种李萨如图形

  nxny分别代表图形在水平或垂直方向的切点数量

  nx/ny=1/2 nx/ny=1/3 nx/ny=2/3 nx/ny=3/4

  3.观察李萨如图形

  a.开通CH2及相应的信号发生器

  b.调节该信号发生器的输出频率,直至观察到第二条稳定的正弦波

  c.按下“HOR1 MENU”+F5(将CH2信号从γ输入)

  d.再次调节频率,使得fx/fy分别等于1:1,1:2,1:3,画下图形

  六、【数据处理】

  七、【实验结果及分析小结】

  示波器使显示电压随时间变化的测试仪器,也就是电压波形,是电子测试中最基础也是最重要的仪器(以电子枪结构和人脸滞留效应为基础)。利用示波器,可以观测和比较单次过程和非周期现象、低频和慢速信号,以及不同时间不同地点观测到的信号。示波器的原理已应用于生活中的各类显示屏上,极大地影响人类的生活。

  在医学方面,示波器主要用于各类影像图形的呈现,如心电图、CT、X光、核磁共振等。学习示波器的使用可以为以后的临床工作增加经验。

  八、【误差分析】

  1.桌面振动造成的影响。

  2.示波器上显示的荧光线较粗,取电压值时的荧光线间宽度不准,使电压值不准。

  3.取正弦周期时肉眼调节两荧光线间宽度不准,导致周期测定不准确。

  4.在选确定fy的值时上下跳动,可能造成取值不准。

  5.机器系统存在系统误差。

  九、【思考与讨论】

  1.简述示波器显示u-t图形(即电信号波形)的原理。

  答:示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏幕上,就可以产生细小的光点。当一个直流电压加到一对偏转板上时,将使光点在荧光屏上产生一个固定位移,该位移的大小与所加直流电压成正比。如果分别将两个直流电压同时加到垂直和水平两对偏转板上时,则荧光屏上的光点位置就由两个方向的位移所共同决定。在被测信号的瞬时值的变化曲线,即u-t曲线。

  2.怎样用示波器定量地测量交流信号的电压有效值和频率?

  答:用光标法。

  调节波形上下移动键,使一条水平线对准波谷或波峰,计算峰-峰值,除以二就是振幅,再除以√2(1.414)就是有效值。

  3.观察两个信号的合成李萨如图形时,应如何操作示波器?

  答:a.开通CH2及相应的信号发生器fy

  b.调节该信号发生器的输出频率,直至观察到第二条稳定的正弦波

  c.按下“HOR1 MENU”+F5(将CH2信号从γ输入)

  4.为了使李萨如图形稳定下来,能否使用示波器上的同步旋钮?为什么?

  答:不能。因为李萨如图形实际上是一个质点同时在x轴、y轴上振动形成的;同步旋钮是使每次扫描都扫描在同一个起始相位,使一个示波器内只有一个稳定的图形。(例:当你测正弦波时示波器内有多个波形,这时就可以调节同步旋钮)但从李萨如图形的形成原理来看,调节同步旋钮不能使它稳定下来。

  5.用示波器观测周期为0.2ms的正弦电压,若在荧光屏上呈现了3个完整而稳定的正弦波形,扫描电压的周期等于多少毫秒?

  答: 0.2×3=0.6ms,所以周期是0.06ms.

模拟示波器实验报告总结 篇5

  示波器作为电子测量领域中不可或缺的重要仪器,其广泛应用于电路分析、信号处理及故障诊断等方面。本实验通过实际操作,深入了解示波器的基本结构、工作原理及其使用方法,掌握使用示波器观测电信号波形、测量电压和频率等基本技能。通过本次实验,我们不仅能加深对电子测量技术的理解,还能提升解决实际电路问题的能力。

  实验目的

  1.了解示波器的基本机构和工作原理。

  2.掌握使用示波器和信号发生器的基本方法。

  3.学会使用示波器观测电信号波形、电压幅值以及频率。

  4.学习通过李萨如图形法测量未知信号频率的方法。

  实验仪器与设备

  1.示波器×1

  2.信号发生器×2

  3.信号线×2

  4.其他辅助工具(如万用表、连接线等)

  实验原理

  示波器是利用电子示波管的特性,将电信号转换为图像显示在荧光屏上,以便进行观察和测量的电子测量仪器。其核心部件是阴极射线管(CRT),主要由电子枪、偏转系统和荧光屏组成。通过控制电子束在荧光屏上的偏转,示波器能够显示出被测信号的波形图。

  在示波器的使用中,垂直偏转系统用于控制波形在垂直方向(电压)上的偏转,而水平偏转系统则用于控制波形在水平方向(时间)上的扫描。通过调节这两个系统的参数,可以观测到不同时间尺度和电压范围的信号波形。

  实验步骤

  1.实验准备

  阅读示波器使用说明书,了解各旋钮和按钮的功能。

  检查示波器和信号发生器的连接,确保所有设备均已正确接地。

  接通示波器和信号发生器的电源,预热15分钟。

  2.示波器基本设置

  调节示波器的亮度、聚焦和水平、垂直位移旋钮,使扫描线清晰居中。

  将示波器的扫描模式设置为“AUTO”或“NORM”,以便自动调整扫描速率和触发。

  3.信号观测

  向示波器的Y轴输入端(如CH1)接入一个已知频率和电压的正弦波信号。

  调节垂直偏转因数和水平偏转因数,使波形在荧光屏上清晰显示。

  观察并记录波形的形状、幅值、周期等参数。

  4.李萨如图形法测频

  向示波器的X轴和Y轴分别输入两个频率成简单整数比的正弦波信号。

  调节示波器的扫描时间旋钮至“X-Y”模式,使两路信号进行合成。

  观察并绘制出不同频率比下的李萨如图形,分析图形特点与信号频率之间的关系。

  利用李萨如图形法求出未知信号的频率,并与信号发生器读数值进行比较,计算相对误差。

  实验结果与分析

  1.观测结果

  在实验中,我们成功观测到了清晰的正弦波信号波形,并通过调节示波器的各项参数,获得了不同时间尺度和电压范围的波形图。同时,我们还利用李萨如图形法成功测出了未知信号的频率,并与信号发生器读数值进行了对比。

  2.数据分析

  通过对比实验测量值与信号发生器读数值,我们发现两者之间存在一定的误差。误差的主要来源包括示波器本身的`系统误差、测量过程中的操作误差以及信号源的不稳定性等。为了减小误差,我们在实验过程中采取了多次测量取平均值的方法,并对测量数据进行了逐差法处理。

  结论

  本次实验通过实际操作,使我们深入了解了示波器的基本结构和工作原理,掌握了使用示波器和信号发生器的基本方法。同时,我们还学会了使用示波器观测电信号波形、测量电压和频率等基本技能。通过实验数据的分析和处理,我们进一步加深了对电子测量技术的理解,并提升了解决实际电路问题的能力。

  后续建议

  为了进一步提高实验效果和测量精度,建议在后续实验中加强对示波器各项参数的调节和校准工作,并尝试使用不同类型的信号源和波形进行观测和分析。同时,还可以结合其他电子测量仪器(如万用表、逻辑分析仪等)进行综合实验,以全面提升电子测量技能。

模拟示波器实验报告总结 篇6

  示波器作为电子测量领域的重要工具,能够将人眼无法直接观测的交变电信号转换成直观的图像显示在荧光屏上,对于观察、分析和测量电路中的电信号波形、电压、频率等参数具有重要意义。本次实验通过实际操作,掌握示波器的基本工作原理、使用方法及注意事项,进而提升对电子测量技术的理解和应用能力。通过本次实验,我们不仅能够加深对示波器结构的认识,还能学会如何使用示波器观测和测量各种电信号,为后续的电子学习和科研活动打下坚实的基础。

  实验目的

  1.了解示波器的基本机构和工作原理。

  2.掌握使用示波器和信号发生器的基本方法。

  3.学会使用示波器观测电信号波形、电压幅值及频率。

  4.通过实际操作,加深对示波器在电子测量中应用的理解。

  实验仪器与设备

  1.示波器×1

  2.信号发生器×2

  3.信号线×2

  4.其他辅助工具(如万用表、连接线等)

  实验原理

  示波器主要由示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路及电源等部分组成。示波器通过电子束在荧光屏上的偏转来显示电信号的波形。在垂直偏转板上加被测信号电压,在水平偏转板上加锯齿波电压,电子束在荧光屏上描绘出被测信号的波形。通过调节示波器的各个旋钮,可以实现对波形的放大、缩小、移动及稳定显示。

  实验步骤

  1.实验准备

  阅读示波器使用说明书,了解各旋钮的功能和操作方法。

  接通示波器电源,预热10-15分钟,确保仪器稳定工作。

  检查信号发生器,确保其输出信号稳定可靠。

  2.仪器连接

  使用信号线将两个信号发生器的`输出端分别连接到示波器的CH1和CH2输入端。

  将示波器的扫描时间旋钮置于“AUTO”或“X-Y”模式,以便观察合成波形。

  3.信号观测

  调节示波器的“亮度”和“聚焦”旋钮,使扫描线清晰显示。

  向CH1和CH2输入两个正弦波信号,调整信号频率和幅度,观察示波器上的波形显示。

  通过调节示波器的“垂直偏转因数”和“水平偏转因数”旋钮,改变波形在荧光屏上的大小和位置。

  4.李萨如图观测

  将示波器的扫描时间旋钮置于“X-Y”模式,使两路信号进行合成。

  调节信号发生器的频率,使两个正弦波的频率之比满足特定条件(如整数比),观察并绘制出李萨如图形。

  分析李萨如图形的特点与两个信号频率之间的关系,验证理论计算结果的正确性。

  实验数据与结果

  1.当两个正弦波的频率之比为整数比时,荧光屏上呈现出稳定的李萨如图形。

  2.通过测量图形上的切点数,计算出两个信号的频率之比,并与理论值进行比较,验证实验结果的准确性。

  实验结论

  通过本次实验,我们成功地掌握了示波器的基本使用方法,学会了如何观测和测量电信号的波形、电压幅值及频率。同时,我们还通过观测李萨如图形,加深了对示波器在频率测量中应用的理解。实验过程中,我们遇到了仪器调节、信号干扰等问题,但通过不断尝试和调整,最终得到了满意的实验结果。本次实验不仅提高了我们的动手能力和实践能力,还培养了我们分析问题和解决问题的能力。

  实验反思

  1.在实验过程中,应注意保持实验环境的安静和稳定,避免外界因素对实验结果的影响。

  2.在调节示波器旋钮时,应缓慢进行,避免过快的调节导致波形失真或仪器损坏。

  3.在观测李萨如图形时,应注意调整信号发生器的频率和相位差,以获得稳定的图形显示。

  通过本次实验,我们深刻体会到了示波器在电子测量中的重要性,也更加坚定了我们学好电子技术的信心和决心。

模拟示波器实验报告总结 篇7

  示波器作为一种常用的电子测量仪器,在电子技术领域有着广泛的应用。通过本次实验,我们深入了解示波器的工作原理和使用方法,掌握其在测量电信号方面的基本操作和应用技巧。

  一、实验目的

  1、了解示波器的基本结构和工作原理。

  2、掌握示波器的`基本操作方法,包括调节垂直灵敏度、水平扫描速度、触发方式等。

  3、学会用示波器观察和测量各种电信号的波形、幅度、周期和频率等参数。

  二、实验仪器

  示波器、函数信号发生器、探头等。

  三、实验原理

  示波器是一种能够显示电信号波形的电子仪器,它通过在荧光屏上产生一个快速移动的亮点来描绘电信号的变化。示波器的主要组成部分包括垂直放大器、水平扫描发生器、触发电路和荧光屏等。

  四、实验内容与步骤

  1、熟悉示波器的面板操作

  了解各控制旋钮的功能和作用。

  练习调节亮度、聚焦、垂直位移和水平位移等。

  2、观察正弦波信号

  连接函数信号发生器和示波器,设置函数信号发生器输出正弦波信号。

  调节示波器的垂直灵敏度和水平扫描速度,使正弦波波形稳定显示在屏幕上。

  测量正弦波的幅度和周期,并计算其频率。

  3、观察方波信号

  改变函数信号发生器的输出为方波信号。

  重复上述步骤,观察并测量方波的参数。

  4、观察三角波信号

  再次改变函数信号发生器的输出为三角波信号。

  进行观察和测量。

  五、实验数据与分析

  1、正弦波

  幅度:xx(V)

  周期:xx(ms)

  频率:xx(Hz)

  2、方波

  幅度:xx(V)

  周期:xx(ms)

  频率:xx(Hz)

  3、三角波

  幅度:xx(V)

  周期:xx(ms)

  频率:xx(Hz)

  六、实验总结

  通过本次实验,我们对示波器的使用有了更深入的了解和掌握。能够熟练地调节示波器的各项参数,准确地测量各种电信号的波形参数。但在实验过程中,也存在一些不足之处,如对某些旋钮的调节不够精确,导致测量结果存在一定的误差。在今后的学习和实验中,我们将进一步加强练习,提高实验技能和数据处理能力。

  七、注意事项

  1、正确连接示波器和信号发生器,避免短路或接错。

  2、调节示波器参数时,应逐步进行,避免过度调节导致显示混乱。

  3、实验结束后,关闭仪器设备,整理好实验器材。

模拟示波器实验报告总结 篇8

  一、实验目的及要求:

  (1)了解示波器的基本工作原理。

  (2)学习示波器、函数信号发生器的使用方法。

  (3)学习用示波器观察信号波形和利用示波器测量信号频率的方法。

  二、 实验原理:

  1) 示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。

  2) 示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。

  3) 示波器显示波形的原理:如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的'图形或不断地移动的图形,甚至很复杂的图形。要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数。示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节接近满足式频率整数倍时条件下,再加入“同步”的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。

  4) 李萨如图形的基本原理:如果同时从示波器的x轴和y轴输入频率相同或成简单整数比的两 个正弦电压,则屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。李萨如图形的形成规律为:如果沿x,y分别作一条直线,水平方向的直线做多可得的交点数为N(x),竖直方向最多可得的交点数为N(y),则x和y方向输入的两正弦波的频率之比为 f(x):f(y)=N(y):N(x)。

  三、 实验仪器:

  示波器、函数信号发生器。

  四、 实验操作的主要步骤:

  (一) 示波器的使用与调节

  1) 将各控制旋钮置于相关位置。

  2) 接通电源,按下面板左下角的“POWER”钮,指示灯亮,稍待片刻,仪器进入正常工作状 态。

  3) 经示波管灯丝预热后,屏上出现绿色亮点,调节INTEN、FOCUS、POSITION,使亮点清晰。

  4) 将TIME/DIV逐渐旋到2ms或5ms,观察光点由慢变快移动,直至屏上显示一条稳定的水 平扫描线,按(3)使线清晰。

  (二) 实验内容:

  1) 观察正弦波波长:

  a)将AC GND DC转换开关置于AC

  b)讲面板右上角的SOURCE置于CH2

  c)将函数信号发生器的50Hz信号源直接输入CH2-Y输入端(红插头应接函数发生器输出的红接线柱)

  d)屏上显示出正弦波(调V/DIV调节大小,TIME/DIV扫描开关使之出现正弦波,IEVEL使波形稳定)

  e)改变扫描电压的频率(TIME/DIV)观察正弦波得变化,使屏上出现多个完整的波形图。

  2) 观察并描绘李萨如图形,测量正弦信号频率。

  利用利萨如图测正弦电压的频率基本原理

  通过观察荧光屏上利萨如图形进行频率对比的方法称之为利萨如图形法。此法于1855年由利萨如所证明。将被测正弦信号fx加到y偏转板,将参考正弦信号fx加到x偏转板,当两者的频率之比fy/fx是整数时,在荧光屏上将出现利萨如图。

  不同频率比的利萨如图形。判断两个电压信号频率比的条件是屏上出现了利萨如图形稳定不动,方法是对稳定不动的图形分别做水平直线和竖直直线与图形相切,设水平线上的切点数最多为Nx,竖直线上的切点数最多为Ny,则

  fy/fx=Nx/Ny

  图1 李萨如图与信号频率的关系

  图2 fx/fy=1:1时李萨如图与信号相位差的关系

  五、数据记录及处理:

  用李萨如图测量正弦信号频率

  六、实验注意事项 :

  1.信号发生器、示波器预热3分钟以后才能正常工作。

  2.测信号电压时,一定要将电压衰减旋纽的微调顺时针旋足(校正位置);测信号周期时,一定要将扫描速率旋纽的微调顺时针旋足(校正位置);

  3.不要频繁开关机,示波器上光点的亮度不可调得太强,也不能让亮点长时间停在荧光屏的一点上,如果暂时不用,把辉度降到最低即可。

  4.转动旋钮和按键时必须有的放矢,不要将开关和旋钮强行旋转、死拉硬拧,以免损坏按键、旋钮和示波器,示波器探头与插座的配合方式类似于挂口灯泡与灯座的锁扣配合方式,切忌生拉硬拽。

  七、趣味物理实验心得:

  一个学期就要过去了,在本学期里,老师又教了很多实验,我做了许多类型的实验,让我受益菲浅,我又学会了很多东西,其中很多知识在平时的学习中都是无法学习到的,其中很多实验都开阔了我们的视野,让我们获得了许多平时课堂上得不到的知识。

  通过高中以及大学两个学期的物理实验,我发现实验是物理学的基础,我们学到的许多理论都来源于实验,也学到了许多物理课上没有教到的理论。很多实验都是需要花费许多心思去学习的,也是非常复杂的。经过这一年的大学物理实验课的学习,让我收获多多。想要做好物理实验容不得半点马虎,她培养了我们耐心、信心和恒心。当然,我也发现了我存在的很多不足。我的动手能力还不够强,当有些实验需要比较强的动手能力的时侯我还不能从容应对,实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台让我们去锻炼自己的动手能力。我的学习方式还有待改善,当面对一些复杂的实验时我还不能很快很好的完成。伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。唯有实验才是检验理论正确与否的唯一方法。为了要使你的理论被人接受,你必须用事实来证明。

模拟示波器实验报告总结 篇9

  一、示波器的介绍:

  示波器是一种用途十分广泛的电子测量仪器,它能把肉眼看不见的电信号变换成看得见的图像。

  示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束在屏面上描绘出被测信号的瞬时值的变化曲线。

  示波器显示的是信号电压随时间的变化。因此,示波器可以用来测量信号的频率,周期,信号的上升沿/下降沿,信号的过冲,信号的噪声,信号间的时序关系等等。

  在示波器显示屏上,横坐标(X)代表时间,纵坐标(Y)代表电压,(注:如果示波器有测量电流的功能,纵坐标还代表电流。)还有就是比较少被关注的-亮度(Z),在TEK的DPO示波器中,亮度还表示了出现概率(它用16阶灰度来表示出现概率)。

  二、示波器的基本作用:

  用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测。

  三、示波器的分类:

  (1)按照信号的不同分类

  模拟示波器采用的是模拟电路(示波管,其基础是电子枪)电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上。屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来。

  数字示波器则是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。数字示波器可以分为数字存储示波器(DSO),数字荧光示波器(DPO)和采样示波器。

  模拟示波器要提高带宽,需要示波管、垂直放大和水平扫描全面推进。数字示波器要改善带宽只需要提高前端的A/D转换器的性能,对示波管和扫描电路没有特殊要求。加上数字示波管能充分利用记忆、存储和处理,以及多种触发和超前触发能力。廿世纪八十年代数字示波器异军突起,成果累累,大有全面取代模拟示波器之势,模拟示波器的确从前台退到后台。

  (2)按照结构和性能不同分类

  ①普通示波器:电路结构简单,频带较窄,扫描线性差,仅用于观察波形。

  ②多用示波器:频带较宽,扫描线性好,能对直流、低频、高频、超高频信号和脉冲信号进行定量测试。借助幅度校准器和时间校准器,测量的准确度可达±5%。

  ③多线示波器:采用多束示波管,能在荧光屏上同时显示两个以上同频信号的波形,没有时差,时序关系准确。

  ④多踪示波器:具有电子开关和门控电路的结构,可在单束示波管的荧光屏上同时显示两个以上同频信号的波形。但存在时差,时序关系不准确。

  ⑤取样示波器。采用取样技术将高频信号转换成模拟低频信号进行显示,有效频带可达GHz级。

  ⑥记忆示波器:采用存储示波管或数字存储技术,将单次电信号瞬变过程、非周期现象和超低频信号长时间保留在示波管的荧光屏上或存储在电路中,以供重复测试。

  ⑦数字示波器:内部带有微处理器,外部装有数字显示器,有的产品在示波管荧光屏上既可显示波形,又可显示字符。被测信号经模一数变换器(A/D变换器)送入数据存储器,通过键盘操作,可对捕获的波形参数的数据,进行加、减、乘、除、求平均值、求平方根值、求均方根值等的运算,并显示出答案数字。

  四、简约介绍示波器的基本构造:

  显示电路

  显示电路包括示波管及其控制电路两个部分。示波管是一种特殊的电子管,是示波器一个重要组成部分。示波管由电子枪、偏转系统和荧光屏3个部分组成。

  (1)电子枪

  电子枪用于产生并形成高速、聚束的电子流,去轰击荧光屏使之发光。

  (2)偏转系统

  示波管的偏转系统大都是静电偏转式,它由两对相互垂直的平行金属板组成,分别称为水平偏转板和垂直偏转板。分别控制电子束在水平方向和垂直方向的运动。

  (3)荧光屏

  荧光屏位于示波管的终端,它的作用是将偏转后的电子束显示出来,以便观察。

  Y轴放大电路

  由于示波管的偏转灵敏度甚低,例如常用的示波管13SJ38J型,其垂直偏转灵敏度为0.86mm/V(约12V电压产生1cm的偏转量),所以一般的被测信号电压都要先经过垂直放大电路的放大,再加到示波管的垂直偏转板上,以得到垂直方向的适当大小的图形。

  X轴放大电路

  由于示波管水平方向的偏转灵敏度也很低,所以接入示波管水平偏转板的电压(锯齿波电压或其它电压)也要先经过水平放大电路的放大以后,再加到示波管的水平偏转板上,以得到水平方向适当大小的图形。

  扫描同步电路

  扫描电路产生一个锯齿波电压。该锯齿波电压的频率能在一定的范围内连续可调。锯齿波电压的作用是使示波管阴极发出的电子束在荧光屏上形成周期性的、与时间成正比的水平位移,即形成时间基线。这样,才能把加在垂直方向的被测信号按时间的变化波形展现在荧光屏上。

  电源供给电路

  电源供给电路:供给垂直与水平放大电路、扫描与同步电路以及示波管与控制电路所需的负高压、灯丝电压等。

  五、示波器的使用方法:

  示波器虽然分成好几类,各类又有许多种型号,但是一般的示波器除频带宽度、输入灵敏度等不完全相同外,在使用方法的基本方面都是相同的。本章以SR-8型双踪示波器为例介绍。

  (一)面板装置SR-8型双踪示波器的面板图如图所示。其面板装置按其位置和功能通常可划分为3大部分:显示、垂直(Y轴)、水平(X轴)。现分别介绍这3个部分控制装置的作用。

  1.显示部分主要控制件为:

  (1)电源开关。

  (2)电源指示灯。

  (3)辉度 调整光点亮度。

  (4)聚焦调整光点或波形清晰度。

  (5)辅助聚焦 配合“聚焦”旋钮调节清晰度。

  (6)标尺亮度调节坐标片上刻度线亮度。

  (7)寻迹 当按键向下按时,使偏离荧光屏的光点回到显示区域,而寻到光点位置。

  (8)标准信号输出1kHz、1V方波校准信号由此引出。加到Y轴输入端,用以校准Y轴输入灵敏度和X轴扫描速度。

  2.Y轴插件部分

  (1)显示方式选择开关用以转换两个Y轴前置放大器YA与YB 工作状态的控制件,具有五种不同作用的显示方式:

  “交替”:当显示方式开关置于“交替”时,电子开关受扫描信号控制转换,每次扫描都轮流接通YA或YB 信号。当被测信号的频率越高,扫描信号频率也越高。电

  子开关转换速率也越快,不会有闪烁现象。这种工作状态适用于观察两个工作频率较高的信号。

  “断续”:当显示方式开关置于“断续”时,电子开关不受扫描信号控制,产生频率固定为200kHz方波信号,使电子开关快速交替接通YA和YB。由于开关动作频率高于被测信号频率,因此屏幕上显示的两个通道信号波形是断续的。当被测信号频率较高时,断续现象十分明显,甚至无法观测;当被测信号频率较低时,断续现象被掩盖。因此,这种工作状态适合于观察两个工作频率较低的信号。

  “YA”、“YB ”:显示方式开关置于“YA ”或者“YB ”时,表示示波器处于单通道工作,此时示波器的工作方式相当于单踪示波器,即只能单独显示“YA”或“YB ”通道的信号波形。

  “YA + YB”:显示方式开关置于“YA + YB ”时,电子开关不工作,YA与YB 两路信号均通过放大器和门电路,示波器将显示出两路信号叠加的波形。

  (2)“DC-⊥-AC”Y轴输入选择开关,用以选择被测信号接至输入端的耦合方式。置于“DC”是直接耦合,能输入含有直流分量的交流信号;置于“AC”位置,实现交流耦合,只能输入交流分量;置于“⊥”位置时,Y轴输入端接地,这时显示的时基线一般用来作为测试直流电压零电平的参考基准线。

  (3)“微调V/div”灵敏度选择开关及微调装置。灵敏度选择开关系套轴结构,黑色旋钮是Y轴灵敏度粗调装置,自10mv/div~20v/div分11档。红色旋钮为细调装置,顺时针方向增加到满度时为校准位置,可按粗调旋钮所指示的数值,读取被测信号的幅度。当此旋钮反时针转到满度时,其变化范围应大于2.5倍,连续调节“微调”电位器,可实现各档级之间的灵敏度覆盖,在作定量测量时,此旋钮应置于顺时针满度的“校准”位置。

  (4)“平衡” 当Y轴放大器输入电路出现不平衡时,显示的光点或波形就会随“V/div”开关的“微调”旋转而出现Y轴方向的位移,调节“平衡”电位器能将这种位移减至最小。

  (5)“↑↓” Y轴位移电位器,用以调节波形的垂直位置。

  (6)“极性、拉YA ”YA 通道的极性转换按拉式开关。拉出时YA 通道信号倒相显示,即显示方式(YA+ YB )时,显示图像为YB - YA 。

  (7)“内触发、拉YB ”触发源选择开关。在按的`位置上(常态) 扫描触发信号分别取自YA 及YB 通道的输入信号,适应于单踪或双踪显示,但不能够对双踪波形作时间比较。当把开关拉出时,扫描的触发信号只取自于YB 通道的输入信号,因而它适合于双踪显示时对比两个波形的时间和相位差。

  (8)Y轴输入插座采用BNC型插座,被测信号由此直接或经探头输入。

  3.X轴插件部分

  (1)“t/div” 扫描速度选择开关及微调旋钮。X轴的光点移动速度由其决定,从0.2μs~1s共分21档级。当该开关“微调”电位器顺时针方向旋转到底并接上开关后,即为“校准”位置,此时“t/div”的指示值,即为扫描速度的实际值。

  (2)“扩展、拉×10”扫描速度扩展装置。是按拉式开关,在按的状态作正常使用,拉的位置扫描速度增加10倍。“t/div”的指示值,也应相应计取。采用“扩展 拉×10”适于观察波形细节。

  (3)“→←” X轴位置调节旋钮。系X轴光迹的水平位置调节电位器,是套轴结构。外圈旋钮为粗调装置,顺时针方向旋转基线右移,反时针方向旋转则基线左移。置于套轴上的小旋钮为细调装置,适用于经扩展后信号的调节。

  (4)“外触发、X外接”插座采用BNC型插座。在使用外触发时,作为连接外触发信号的插座。也可以作为X轴放大器外接时信号输入插座。其输入阻抗约为1MΩ。外接使用时,输入信号的峰值应小于12V。

  (5)“触发电平”旋钮 触发电平调节电位器旋钮。用于选择输入信号波形的触发点。具体地说,就是调节开始扫描的时间,决定扫描在触发信号波形的哪一点上被触发。顺时针方向旋动时,触发点趋向信号波形的正向部分,逆时针方向旋动时,触发点趋向信号波形的负向部分。

  (6)“稳定性”触发稳定性微调旋钮。用以改变扫描电路的工作状态,一般应处于待触发状态。调整方法是将Y轴输入耦合方式选择(AC-地-DC)开关置于地档,将V/div开关置于最高灵敏度的档级,在电平旋钮调离自激状态的情况下,用小螺丝刀将稳定度电位器顺时针方向旋到底,则扫描电路产生自激扫描,此时屏幕上出现扫描线;然后逆时针方向慢慢旋动,使扫描线刚消失。此时扫描电路即处于待触发状态。在这种状态下,用示波器进行测量时,只要调节电平旋钮,即能在屏幕上获得稳定的波形,并能随意调节选择屏幕上波形的起始点位置。少数示波器,当稳定度电位器逆时针方向旋到底时,屏幕上出现扫描线;然后顺时针方向慢慢旋动,使屏幕上扫描线刚消失,此时扫描电路即处于待触发状态。

  (7)“内、外” 触发源选择开关。置于“内”位置时,扫描触发信号取自Y轴通道的被测信号;置于“外”位置时,触发信号取自“外触发X 外接”输入端引入的外触发信号。

  (8)“AC”“AC(H)”“DC”触发耦合方式开关。“DC”档,是直流藕合状态,适合于变化缓慢或频率甚低(如低于100Hz)的触发信号。“AC”档,是交流藕合状态,由于隔断了触发中的直流分量,因此触发性能不受直流分量影响。“AC(H)”档,是低频抑制的交流耦合状态,在观察包含低频分量的高频复合波时,触发信号通过高通滤波器进行耦合,抑制了低频噪声和低频触发信号(2MHz以下的低频分量),免除因误触发而造成的波形幌动。

  (9)“高频、常态、自动”触发方式开关。用以选择不同的触发方式,以适应不同的被测信号与测试目的。“高频”档,频率甚高时(如高于5MHz),且无足够的幅度使触发稳定时,选该档。此时扫描处于高频触发状态,由示波器自身产生的高频信号(200kHz信号),对被测信号进行同步。不必经常调整电平旋钮,屏幕上即能显示稳定的波形,操作方便,有利于观察高频信号波形。“常态”档,采用来自Y轴或外接触发源的输入信号进行触发扫描,是常用的触发扫描方式。“自动”挡,扫描处于自动状态(与高频触发方式相仿),但不必调整电平旋钮,也能观察到稳定的波形,操作方便,有利于观察较低频率的信号。

  (10)“+、-”触发极性开关。在“+”位置时选用触发信号的上升部分,在“-”位置时选用触发信号的下降部分对扫描电路进行触发。

  (二)使用步骤

  用示波器能观察各种不同电信号幅度随时间变化的波形曲线,在这个基础上示波器可以应用于测量电压、时间、频率、相位差和调幅度等电参数。

  下面介绍用示波器观察电信号波形的使用步骤。

  1.选择Y轴耦合方式

  根据被测信号频率的高低,将Y轴输入耦合方式选择“AC-地-DC”开关置于AC或DC。

  2.选择Y轴灵敏度

  根据被测信号的大约峰-峰值(如果采用衰减探头,应除以衰减倍数;在耦合方式取DC档时,还要考虑叠加的直流电压值),将Y轴灵敏度选择V/div开关(或Y轴衰减开关)置于适当档级。实际使用中如不需读测电压值,则可适当调节Y轴灵敏度微调(或Y轴增益)旋钮,使屏幕上显现所需要高度的波形。

  3.选择触发(或同步)信号来源与极性

  通常将触发(或同步)信号极性开关置于“+”或“-”档。

  4.选择扫描速度

  根据被测信号周期(或频率)的大约值,将X轴扫描速度t/div(或扫描范围)开关置于适当档级。实际使用中如不需读测时间值,则可适当调节扫速t/div微调(或扫描微调)旋钮,使屏幕上显示测试所需周期数的波形。如果需要观察的是信号的边沿部分,则扫速t/div开关应置于最快扫速档。

  5.输入被测信号

  被测信号由探头衰减后(或由同轴电缆不衰减直接输入,但此时的输入阻抗降低、输入电容增大),通过Y轴输入端输入示波器。

  六、示波器使用前的检查:

  示波器初次使用前或久藏复用时,有必要进行一次能否工作的简单检查和进行扫描电路稳定度、垂直放大电路直流平衡的调整。示波器在进行电压和时间的定量测试时,还必须进行垂直放大电路增益和水平扫描速度的校准。示波器能否正常工作的检查方法、垂直放大电路增益和水平扫描速度的校准方法,由于各种型号示波器的校准信号的幅度、频率等参数不一样,因而检查、校准方法略有差异。